Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Parasitol Res ; 2024: 4775361, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38495541

RESUMO

Ecoepidemiology is an emerging field that attempts to explain how biotic, environmental, and even social factors influence the dynamics of infectious diseases. Particularly in vector-borne diseases, the study under this approach offers us an overview of the pathogens, vectors, and hosts that coexist in a given region and their ecological determinants. As a result of this, risk predictions can be established in a changing environment and how it may impact human populations. This paper is aimed at evaluating some ecoepidemiological characteristics of Chagas disease in a natural reserve in southeastern Mexico that borders human settlements. We carry out a cross-sectional study in 2022 where we search insects manually and with light traps. We set traps for small mammals and bats and conducted interviews with the inhabitants living around the study site. We identified the presence of Triatoma dimidiata and T. huehuetenanguensis species with a percentage of TcI T. cruzi infection of 68.4% (95% CI: 66.9-69.9). Temperature and humidity were not determining factors for the probability of insect capture. Of the 108 wild mammals (Chiroptera, Rodentia, and Didelphimorphia), none was infected with T. cruzi. Knowledge about Chagas disease in nearby inhabitants is poor, and some characteristics were found on the periphery of dwellings that could offer a refuge for insect vectors. With this information, surveillance strategies can be generated in the study area that reduce the risk of transmission of T. cruzi parasite to humans, and it is expected to motivate the use of this field in future research.

2.
Trop Med Infect Dis ; 8(7)2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37505656

RESUMO

Chagas disease is one of the most important tropical infections in the world and mainly affects poor people. The causative agent is the hemoflagellate protozoan Trypanosoma cruzi, which circulates among insect vectors and mammals throughout the Americas. A large body of research on Chagas disease has shown the complexity of this zoonosis, and controlling it remains a challenge for public health systems. Although knowledge of Chagas disease has advanced greatly, there are still many gaps, and it is necessary to continue generating basic and applied research to create more effective control strategies. The aim of this review is to provide up-to-date information on the components of Chagas disease and highlight current trends in research. We hope that this review will be a starting point for beginners and facilitate the search for more specific information.

3.
Zookeys ; 1084: 139-150, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35177949

RESUMO

A wide variety of mammals are involved in the sylvatic cycle of Trypanosomacruzi, the causative agent of Chagas disease. In many areas in Latin America where T.cruzi is endemic, this cycle is poorly known, and its main reservoirs have not been identified. In this study we analyzed T.cruzi infection in bats and other small mammals from an Ecological Reserve in southeastern Mexico. From January through March 2021, we captured wild individuals to extract cardiac and peripheral blood, and infection was detected by PCR of the mini-exon gene. In bats, the prevalence of infection was 16.36%, while in small mammals the prevalence was 28.57%. All of the samples that were positive for T.cruzi were identified as the TCI genotype. Our findings suggest that this zone, situated at the periphery of urban zones might have epidemiological relevance in the sylvatic cycle of T.cruzi and needs to be monitored. The infection of bats in this area is particularly concerning since the flight pattern of this populations overlaps with human settlements. Despite being subject to conservation protections, there continue to be anthropogenic actions that disturb the study area, which could exacerbate risks to public health.

4.
Zookeys ; 1070: 1-12, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34819767

RESUMO

Climate change represents a real threat to biodiversity conservation worldwide. Although the effects on several species of conservation priority are known, comprehensive information about the impact of climate change on reptile populations is lacking. In the present study, we analyze outcomes on the potential distribution of the black beaded lizard (Helodermaalvarezi Bogert & Martin del Campo, 1956) under global warming scenarios. Its potential distribution, at present and in projections for the years 2050 and 2070, under both optimistic and pessimistic climate change forecasts, were computed using current data records and seven bioclimatic variables. General results predict a shift in the future potential distribution of H.alvarezi due to temperature increase. The optimistic scenario (4.5 W/m2) for 2070 suggests an enlargement in the species' distribution as a response to the availability of new areas of suitable habitat. On the contrary, the worst-case scenario (7 W/m2) shows a distribution decrease by 65%. Moreover, the range distribution of H.alvarezi is directly related to the human footprint, which consequently could magnify negative outcomes for this species. Our research elucidates the importance of conservation strategies to prevent the extinction of the black beaded lizard, especially considering that this species is highly threatened by aversive hunting.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...